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(Receioed I November 1991) 

It is first pointed out that in the jellium model of the homogeneous electron liquid, the correlation 
energy EJN per particle can be directly related to the ratio of the single-particle kinetic energy T, to the 
exchange energy A. The relevance of this result to the inhomogeneous electron liquid is then explored for 
light atoms. Such a relation again obtains, but with a markedly different coefficient of proportionality. 
With such a form of correlation energy, Ec,  the Euler equation of density functional theory has somewhat 
reduced “coefficients” of GT,/Sp(r) and 6A/6p(r ) .  The Hartree-Fock Euler equation is regained by putting 
E, = 0. Modified Slater-Kohn-Sham equations are obtained, their use being illustrated by an atomic 
example. 

KEY WORDS: Wigner correlation energy, jellium model, effective mass 

1 INTRODUCTION 

The very definition of correlation energy Ec, as given by Lowdin’, relates to 
Hartree-Fock theory through 

Thus it would seem that the most natural generalization of Hartree-Fock (HF) theory 
to include correlation energy E, would be to transcend the Euler equation of density 
functional theory: 

where 

(1.3) 

183 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



184 N. H. MARCH A N D  A. NAGY 

with p(r, r’) the off-diagonal generalization of pH&) or the Dirac density matrix2, The 
subscripts in the kinetic energy is to keep track of its single-particle nature in Eq. (1.2). 

The aim of the present work is therefore to propose an approximate modification 
of the Euler Eq. (1.2) for an inhomogeneous electron liquid to include the correlation 
energy E, and which reduces to HF theory in the limit E,-+O. The basic idea 
underlying this approximate density functional theory is to relate E, directly, by 
semi-empirical means eventually, to the single-particle quantities T, and A in Eqs. 
(1.2) and (1.3). However, in view of the reliaflce of current practice in density functional 

on the quantitative results of the jellium model of a homogeneous electron 
liquid, we have provided in Section 2 immediately below some first-principles 
motivation for the form of E, to be adopted in the present approximate theory from 
the above model in the strong correlation limit. 

2 RELATION BETWEEN CORRELATION ENERGY E ,  AND RATIO T,/A 
IN JELLIUM MODEL IN STRONG CORRELATION LIMIT 

One of the focal points of density functional theory must be the approximation of 
the correlation energy E, as a functional of the electron density. The simplest 
approximation, that for jellium, where interacting electrons move in a neutralizing 
non-responsive background of positive charge, is disappointing when applied to 
atoms’. 

Nevertheless, this model remains interesting as the only one to date in which the 
ground-state energy is known as a function of density; in this case the constant p o ,  
related to the interelectronic separation rs measured in units of the Bohr radius a,: 

Let us turn to relate this correlation energy to what is readily calculable, namely 
single-particle energies. 

It is known that, in Rydberg per electron, the groundstate energy E of the 
jellium model can be quantitatively found. In the Hartree-Fock approximation, 
E,, is calculated with a single Slater determinant of plane waves, with k vectors 
lying inside the Fermi sphere of radius k,, related to p o  by 

k: 
Po = S’ 

Wigner8 pointed out more than half a century ago that in the extreme low 
density limit rs + infinity, the ground-state energy per electron is quite different from 
the Hartree-Fock result: 
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INHOMOGENEOUS ELECTRON LIQUID 185 

which is in fact true as rs tends to zero. In the low density limit Wigner found 

1.8 E 

N r ,  
_ -  - _ -  

Hence the correlation energy E, = E - EHF is given per electron by 

in the limit of extreme low-density; r, tends to infinity. One obvious thing to note 
is that, in this limit, the correlation energy is equal (to a certain numerical accuracy) 
to the exchange energy. In this strong correlation regime, the question raised by 
Robles and Kemister9 as to whether the correlation energy is related to exchange 
energy can be answered in the affirmative; they are equal in fact in the Wigner electron 
crystal as rs tends to infinity. 

For reasons connected with the numerical study of atomic correlation energies 
given in Section 4 below, we shall, in fact, prefer to relate EJN to both the 
single-particle kinetic energy per electron T J N  which is just the first term in Eq. (2.3), 
and the exchange energy. Then it is evident that one can write also 

Ec T,  
- = constant -, 
N A 

where AIN is the exchange energy per electron given by the second term in Eq. 
(2.3).  

3 CORRELATION ENERGY E ,  RELATED TO SINGLE-PARTICLE 
KINETIC AND EXCHANGE ENERGIES IN LIGHT ATOMS 

With the above result (2.6) on the low density limit of the homogeneous jellium 
model as motivation, the essential idea underlying the approximate density functional 
theory proposed in the present work is to modify the HartreeLFock Euler equation 
(1.2) in the simplest possible manner, without introducing basically new quantities 
into the theory. As mentioned above, Robles and Kemisterg have already raised the 
question as to whether correlation energy can be directly related to exchange energy. 
Here, with motivation as in Section 2 above, our basic assumption is that the 
correlation energy E, can be directly related to a combination of single-particle energy 
T,, and exchange energy A ;  i.e. to quantities already appearing in the Hartree-Fock 
Euler Eq. (1.2). 

For light atoms, our basic assumption is then subsumed into the equation for 
the correlation energy per electron, EJN (See Eq. 2.6 in the low-density jellium 
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T, 
= constant -. E ,  

A' A 
_. 

While we anticipate, in the future, that refinements of Eq. (3.1) will have to be 
sought, we shall show that some interesting consequences for density functional 
theory of light atoms already follow from the simple linear assumption (3.1) between 
the correlation energy per electron and the ratio T J A  of single-particle energies. We 
want to note here, however, that i t  is essential in utilizing Eq. (3.1) as the basis for 
transcending Hartree-Fock theory for light atoms, to determine the constant semi- 
empirically; the strong correlation limit cf the jellium model set ou t  above for 
motivation of Eq. (3.1) must not be used for this purpose. Thus, in Section 4 below, 
the formula (3.1) will be confronted with known atomic energies. Having thereby 
estimated the constant in the assumption (3.1) , Section 5 will transcend within the 
density functional framework the Hartree-Fock Euler Eq. (1.2). 

4 CONFRONTATION WITH ATOMIC ENERGIES 

In Table 1, we have recorded the correlation energies per electron in the second 
column, taken from the work of Clementi". In the third column we record the 
Hartree-Fock exchange energy per electron A / N  taken from the study of Lee and 
Parr", and in the fourth column the ratio EJA.  This ratio has already been 
determined by Robles and Kemister' and found to be approximately &. 

Table 1 Atomic energies. all per electron for neutral atoms. in Rydberg 

-~ 

0 0425 
0 0303 
0 0473 
0 0499 
0 0522 
0 0529 
0 0645 
00716 
0 0780 
0 0724 
0 0738 
0 0738 
0 0744 
0 0737 
0 0793 
0 0840 
0 0874 

1.026 
1.187 
1.333 
1.498 
1.68 1 
1.885 
2.044 
1.223 
2.422 
2.549 
2.666 
2.780 
1.897 
3.019 
3.125 
3.237 
3 354 

0.0414 
0.0255 
0.0354 
0.0333 
0.0310 
0.0280 
0.03 15 
0.0322 
0.0322 
0.0284 
0.0277 
0.0266 
0.0257 
0.0244 
0.0254 
0.0260 
0.0261 

2.789 
4.173 
5.464 
6.552 
7.471 
8.246 
9.151 
9.938 

10.617 
1 1.547 
12.48 1 
13.386 
14.243 
15.049 
15.899 
16.701 
17.453 

0.0152 
0.0072 
0.0086 
0.0076 
0.0070 
0.0064 
0.0070 
0.0072 
0.0073 
0.0063 
0.0060 
0.0055 
0.0052 
0.0049 
0.0050 
0.0050 
0.0050 
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INHOMOGENEOUS ELECTRON LIQUID 187 

We turn next to the formula in terms of the kinetic energy T, and the exchange 
energy A .  The kinetic energy T, is approximated by the negative of the total 
Hartree-Fock energy. TJA is recorded in the fifth column of Table 1 and the ratio 
of E,/N to this in the sixth column. The values in the sixth column provide the 
constant in Eq. (3.1). It is approximately for atoms with Z 2 10. 

5 TRANSCENDING THE H F  EULER EQUATION (1.2) 

The argument below is based on the use of the form (3.1). One therefore writes 

6E, K 6 T ,  K T 6 A  

6 p  A 6 p  A2 6 p ’  
- 

The generalized Euler equation of density functional theory then reads 

and substituting Eq. (5.1) into (5.2) one collects similar terms to obtain 

(5.1) 

The inclusion of electronic correlation energy is here seen to have the effect of 
“renormalizing” the single-particle kinetic energy and the exchange energy terms. 
Evidently, the Hartree-Fock method is regained when one takes the limit E, -+ 0. 
The “renormalization” in Eq. (5.3) is such as to reduce the kinetic* and exchange 
contributions since E, and T, are of opposite signs. If one “renormalized” the 
exchange term alone, then one would immediately be reminded of Slater’s Xa 
method4. 

6 MODIFIED SLATER-KOHN-SHAM EQUATIONS FOR 
INHOMOGENEOUS ELECTRON LIQUID 

The variation of the total energy functional 

* The change in single-particle kinetic energy is like the introduction of an effective electronic mass 
m # me due to electron correlation. 
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188 N. H. MARCH AND A. NAGY 

leads to the one-electron equations 

ui = q u i ,  (6.2) 

where t’ is the external potential and 

6 A  
6 p  

c = -  

is the exchange potential. Defining ii “renormalized” Slater-Kohn-Sham potential 

and “renormalized” one-electron energies 

we obtain a set of Slater-Kohn-Sham equations 

Given knowledge of K and u, the modified Slater-Kohn-Sham equations can be 
solved. 

7 SOLUTION OF THE MODIFIED SLATER-KOHN-SHAM EQUATIONS 
FOR LIGHT ATOMS 

The exact forms of the exchange energy functional A and hence the exchange energy 
potential c, are as yet unknown. There are however several approximate expressions 
for A and u,. Here the so-called Xr exchange energy and potential will be adopted. 
The “renormalized” SKS Eq. (6.6) can be easily solved with appropriate modification 
of the standard X a  programme. Here, results for light atoms are presented. There 
are several ways to select the value of the parameter a in the Xa method. In the 
present context, the best choice seems to be the parameter a,!,;, because it provides 
the Hartree-Fock total energy in the absence of the correlation functional E,. The 
values of K can be calculated from Table 1 and are recorded in the second column 
of Table 2. The third column of Table 2 shows the total energy values obtained with 
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INHOMOGENEOUS ELECTRON LIQUID 189 

Table 2 Total energy determined usin correlation parameter K compared with exact total energy. Also 
tabulated is the correlation parameter ff providing exact total energy and the exact correlation energy of 
the conventional theory and the correlation energy of the density functional theory calculated with the 
present method (in Rydberg) 

0.0218 
0.0344 
0.0381 
0.041 9 
0.0449 
0.0564 
0.0648 
0.0735 

- 15.005 
- 29.444 
-49.453 
-75.816 
- 109.182 

- i99.8on 
- 258.282 

- 150.343 

- 14.956 
-29.335 
- 49.308 
- 75.691 
- 109.172 
-150.135 
- 199.463 
-257.875 

0.0142 
0.0222 
0.0241 
0.0314 
0.0442 
0.04 19 
0.0423 
0.0483 

- 0.09 1 
-0.189 
- 0.249 
-0.313 
-0.370 
-0.516 
- 0.644 
- 0.780 

- 0.060 
-0.121 

-0.236 
-0.158 

-0.386 
-0.372 

-0.421 
-0.515 

these parameters K. Comparing them with the exact total energies in the fourth 
column, we can see that the total energy is somewhat overestimated. The fifth column 
of Table 2 presents the parameter I? that yields the exact total energy. 

Besides the correlation and the total energies we can study the electron density 
obtained from the solution of the “renormalized” SKS Eq. (6.6). Figure 1 presents 
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Figure 1 Radial electron density of Be atom with a radial scale which is linear with respect to rl”.  
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Figure 2 Radial electron density differences for Be atom with a radial scale which in linear with respect 
to r i  '(A: D(r) - DCl(r); + : DHF(r) - Dcl(r): >: : D,,,, - Dc,). 

the radial density D(r) = 47rrZq(r) for the Be atom. Figure 2 shows the difference 
between radial densities of the present and CI methods D(r) - D&). For comparison, 
the deviation of the H F  density from the CI density: DHF(r) - Dc,(r) and the Xa,, 
density from the CI density: DxIHc(r )  - DJr) are also plotted. 

A test of radial densities is offered by the expectation values of powers of the radius. 
(r'), (r) and ( r - ' )  for the Be atom are presented in Table 3. (Total electron density 
here is normalized to 1.) For comparison the CI13-14, H F  and Xx,,  data are also 
recorded. The present results and the XZ,, values are slightly better than the HF data. 

Table 3 
calculated with the Hartree-Fock. CI. XrHb and the present method 

Expectation values of powers of the radius for Be atom 

: r 2 >  (,.> < r -  '> 
H F  3.3297 1.5322 2.1022 
CI 4.0814 1.4970 2.1062 
XZH, 4.1793 1.508 1 2.1043 
present method '4.1860 1.5083 2.1085 
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8 SUMMARY 

The Euler equation of the approximate theory of the inhomogeneous electron liquid 
proposed in the present work is given in Eq. (5.3). Clearly, it reduces to the HF result 
(1.2) as the correlation energy E, tends to zero. In Eq. (5.3), “renormalization” of the 
exchange term alone has some resemblance to Slater’s Xa method. In the method 
proposed here the single-particle energies and the Slater-Kohn-Sham potential 
are also subject to some “renormalization” when electronic correlation is introduced. 
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